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Thin metal films can be deposited in a number of different ways. As a result several types 
of defects or impurities are frozen in the film. In most practical cases films exhibit grain 
boundaries which play a decisive role in transport properties. This paper reviews the 
advances that have been made during the last five years in the field of theoretical descrip- 
tion of electronic scattering at grain boundaries. 

Analytical expressions for the transport parameters (such as resistivity, temperature 
coefficient of resistivity and thermopower) of columnar, monocrystalline and polycrystal- 
line films are derived. Care has been taken to give linearized equations for the transport 
phenomena. Methods for extracting grain parameters are outlined. Special attention is 
focused on correlated size effects. 

Imperfection or impurity effects on the film resistivity and thermopower are con- 
sidered. Methods for determining the energetic parameters U and V and the component 
Si of the thermopower associated with imperfections are proposed. 

Special emphasis is placed on procedures for identifying imperfections by simultaneous 
study of the restructuration processes induced by thermal ageing and of the changes in 
transport parameters on ageing. 

1. Introduction 
Thin films are imperfect in an infinity of ways. It 
is usual to classify the types of imperfections by 
their dimensionality even if the result for elec- 
tronic transport properties, i.e. a reduction of elec- 
tronic conductivity, is crudely the same whatever 
the type of imperfection. Generally we distinguish 
[11: 

1. Point defects such as vacancies, interstitials 
or impurities. 

2. Line imperfections such as dislocations. 
3. Surfaces of imperfections such as grain 

boundaries or stacking faults. 

Structural studies of metal films [2-13] have 

revealed that often films exhibit grained structures; 
both columnar-like [6-10] or fine-grained [11-13] 
structures have been identified. Resistivity recovery 
experiments [4, 7, 14-27] have been interpreted, 
in most cases, in terms of annihilation of point 
defects (vacancies or interstitials) [4, 14-19] or 
dislocations [14, 15, 20, 21] as well as in terms of 
an increase of the average grain size [8, 18, 19-24] 
or of mechanical reordering of the top surface of 
the film [4, 25-28].  

Until 1968 theoretical work was devoted essen- 
tially [29-37] to the study of the geometrical 
limitation of the mean free path by external sur- 
faces. In the last decade interest in electronic 
scattering by other imperfections has been revived, 
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but among the imperfections frozen in films during 
the deposition process only the effect of electronic 
scattering at grain boundaries has been treated 
using simplifying assumptions [37-43]. 

The purpose of this paper is to present the rel- 
evant descriptions of electronic scattering at grain 
boundaries. In general, the paper is based on a 
detailed discussion of grain-boundary effects which 
are connected with the nature of the grains. 

Most of the existing theories use a rule which 
states that if a single relaxation time r i can be 
defined for each type of scatterer (phonons, 
external surfaces or grain boundaries), the resultant 
relaxation time rf is given by: 

1 = ~  1 _ 1 i _ 1 + 1  (1) 
Tf �9 Tj T O T s Tg 

where 0, s and g refer respectively to phonons, 
external surfaces and grain boundaries. 

The contribution of defects other than grain 
boundaries is generally analysed in terms of 
Matthiessen's rule [37]: the contributions to resis- 
tivity due to other imperfections (p~) and to the 
above three types of scatterers (pf) are additive and 
the total resistivity of the film can thus be written 
as 

p; = pf + E (2) 
i 

It must be pointed out that in thin films the simul- 
taneous electronic scattering at external surfaces 
and grain boundaries cannot be separated. In this 
paper the effect of external surfaces is described in 
the framework of Cottey's model [30]. The mean 
free path Xs(O ) related to the external surface scat- 
tering is, for the geometry of the model (Fig. 1), 
given by 

d 
;ks(0) - cos 0 In (I/p) (3) 

where d is the film thickness. 
The reflection coefficient p is defined as the 

fraction of incident carriers at any angle 0 to the 

z, vz 

Figure  1 The geometry of the model. 

y, vy 

surface normal which are specularly scattered at 
the surface. In simplest theories the specularity 
parameter p is assumed to be independent of the 
angle of incidence 0. More sophisticated models 
[33-37] are based on the angular dependence as 
well as on the surface roughness dependence of 
the reflection coefficient. In this paper we deal 
with a constant parameter p. 

2. Grain-boundary models 
In the light of the results of structure analysis, 
films can be conveniently divided into three cat- 
egories: 

1. Polycrystalline films, which exhibit fine- 
grained structure and have an average grain diam- 
eter De that always remains smaller than the film 
thickness d. 

2. Monocrystalline films, in which the average 
grain sizes Dgx and Dgy evaluated in the two 
orthogonal directions are found to be exactly equal 
to or greater than the film thickness. 

3. Columnar films, with grains extended in the 
vertical direction. 

A unidimensional model of grain boundaries 
was first proposed by Mayadas and Shatzkes [38] 
to describe electronic scattering at grain bound- 
aries in monocrystalline or polycrystalline films. In 
this model the grains are represented by two or 
three arrays of planar boundaries with perfectly 
smooth surfaces so that only the boundaries per- 
pendicular to the applied electric field act as 
operative scatterers. 

However in many cases the boundary surfaces 
are not so perfect and the result can be achieved 
by a multidimensional representation of the grain 
boundaries [41-43]. It must be pointed out that 
numerical evaluation of the polycrystalline or 
monocrystalline film resistivity in terms of these 
multidimensional models has shown [37] that the 
Mayadas and Shatzkes model does not markedly 
deviate from the multidimensional models over a 
large range of thicknesses (discrepency less than 
7N). Hence we can restrict our interest to multi- 
dimensional representations of grain boundaries. 

In terms of these multidimensional models the 
grain-boundary scatterers in monocrystalline or 
columnar films are represented (Fig. 2 a )b y  two 
arrays of planar boundaries with rough surfaces 
respectively perpendicular to the x - a n d  y-axes 
(bidimensional model). In polycrystalline films 
three arrays oriented perpendicular to the x-, y- 
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Figure 2 The grain-boundary models: (a) representation 
of columnar or monocrystalline films; (b) representation 
of polycrystalline films. 

and z-axes respectively (Fig. 2b) are assumed to 
cause the resistivity increase. Whatever the multi- 
dimensional representation of the grain boundaries, 
the mathematical treatment is based on common 
physical arguments. It consists of assuming that 
the statistical scattering properties of the grain 
boundaries can be described by two physical 
parameters: the average grain size Dg and the 
transmission coefficient t through grain boundaries. 
The tranmission coefficient t is defined as the frac- 
tion of electrons transmitted through the poten- 
tials that represent the grain boundaries with 
conservation of the electron wave vector K. The 
remainder are diffusely scattered and no longer 
contribute to the current [41-43].  

The probability that an electron travels a dis- 
tance L before suffering a collision at a grain 
boundary is given by 

~ i  = tNi i = x , y , z  (4) 

where N i is the number of successive transmissions 
through the boundaries oriented perpendicular to 
the/-direction. 

If N i is large, i.e. if the transmission coefficient 
t is not far from unity, the probability.~i can be 
rewritten in terms of an exponential function of 
the mean free path Xi related to the grain-boundary 
scattering process: 

-~i = exp(--L/X~) (5) 

From the geometry of the models and since 
from a statistical point of view we are concerned 
with grains having an average grain size Dgi, the 
number of planar boundaries N i can be expressed 
a s  

L 
Ni  = Dg i X i (6) 

where the geometrical parameter Xi depends on 

the orientation of the grain boundary array: 

Xx = Isin 0l Icos r (7) 

Xs = Isin Ot [sin r (8) 

Xz = Icos01 (9) 

Thus for the multidimensional models the total 
probability is readily expressed in terms of the two 
following alternative relations: 

(10) 

where the sums are concerned with the x- and y- 
directions in the case of monocrystalline or colum- 
nar films and with the three directions (x, y,  z) in 
the case of polycrystalline films. 

If the scatterers act independently of each other 
it is possible to define a single relaxation time or 
mean free path for each type of scatterer, so that 
the mean free path X~ describing the combined 
effects of background, grain-boundary and external 
surface scattering may be written as 

1 _ 1 1 + ~ .  1 
X~ X0 X-~ _ . - ~ i  (11) 

Note here that strictly speaking ?t0 is related to 
electron-phonon scattering. However, thin films 
are imperfect in different ways and it is often 
convenient to choose a mean free path )to which 
refers to background scattering processes and 
thus concerns the scattering mechanisms occurring 
in the volume other than the grain-boundary scat- 
tering. 

Introducing Equation 3 into Equation 11 the 
total mean free path 3,:p for polycrystalline films 
with cubic-like structure is given by: 

= Xo {1 + 

+ Icos 0I [(1 - - C ) v  -1 + g - l ] }  (12) 

defining for convenience the grain parameter v and 
the surface parameter p respectively as 

[ v = Dg Xoln (13) 

[ (1)] 
g = d X01n (14) 

This simple result has been obtained with the use 
of the approximate relation 

! c o s ~ l + t s i n ~ l ~ 4 / ~  = C (15) 
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Assuming that in monocrystalline and columnar 
films the grain boundaries consist of two arrays 
with the same average spacing Dg, the total mean 
free path, X~m or X~e, for such thin films is readily 
found to be expressed by the same formula: 

;k;~,X;e 1, = Xo 1 [1 + C2v -1 

+ Icos 01 (U -1 -- Cu-1)] (16) 

Taking into account that several experimental 
works [37, 44-50] have been interpreted by 
assuming that in monocrystalline films the average 
grain size is exactly equal to the film thickness, it 
must be pointed out that in the following section 
we have chosen to treat the monocrystalline film 
in the special case where Dg ~ d. 

3. Grain-boundary effects on transport 
properties 

The transport properties of a thin film are obviously 
sensitive to grain-boundary scattering. In this sec- 
tion we look at the changes in transport parameters 
caused by both external surface and grain-boundary 
scattering. The mathematical treatment is carried 
our under the assumption that the free-electron 
model is applicable. Thus the electron energy e is 
given by 

e = 1 my2 (17) 

where m is the isotropic electron mass. 
The general expressions for the current density 

Jx and heat flux Q~ in a thin metal film subjected 
to an electric field Ex and a temperature gradient 
3 T/ax in the x-direction are [1 ]: 

Jx = -- 2e flv~ day (18) 

and 

Q~ = 2 f f l ( e - - eF)vx  d3v (19) 

respectively, where e is the absolute electron 
charge, v x is the x-component of electron velocity 
v, eF is the Fermi energy, h is Planck's constant 
and f t  represents the deviation from the equilib- 
rium distribution function fo. 

We determine the function fl  by solving the 
Boltzmann transport eqution with the approxi- 
mation that all collision processes can be described 
in terms of the unique relaxation time re4 = Xtiv -I: 

e ~[0 [Ex l ( e _ ~ ) a x _ x  T ] f l  ----= - -  Tfj e m ~ q--- 

] = c ,m ,p  (20) 

1904 

E" is the effective electric field [1] given by 

E' = E~: + _1 __aeF (21) 
x e ax 

Introducing Equation 20 into Equations 1 8 and 
19 and using polar coordinates (v, 0, ~b), it is then 
easily shown that Jx and Qx can be expressed in 
terms of coefficients K n : 

e aT 
Jx = e2Ko E" + ~ K1 3--x 

and K2 aT 
Qx = -eK1E'x  + - -  - -  

with T 3x 

(22) 

(23) 

4~rrn~_5 ~'~e e n a f0 de~;Xfj Kn = ]o ( - - e F )  -~e (0, e) 

• sin30d01e=er n = 0, 1,2 (24) 

If we consider the macroscopic Equations 22 
and 23, then we readily have for the transport 
parameters, i.e. the electrical conductivity of, the 
absolute thermopower Sf and the thermal con- 
ductivity Kf, the expressions 

of = e2Ko (25) 

1 KI 
Sf - (26) 

eT  Ko 
and 

I ( K  --/(21t (27) 
Jcf = ~ 2 Ko]  

If we write the energy dependence of the back- 
ground relaxation time in the form [51 ] 

ro = rue q (28) 

where r b is a constant and q a number, the integral 
K n can be easily evaluated by means of the for- 
mula [ 1 ] 

--;oG(e) ~-~de = G(eF) + (TrkBT)2G"(eF)+6 " "  

(29) 

which is obtained by expanding the function 
G(e) in a Taylor series about e = er and k B is 
Boltzmann's constant. 

Retaining the first term only in the expression 
for Ko the film conductivity takes the general form 
[42, 43] 

ofj 3 1 
o0 - 2 ~ [ a i - - � 8 9  

3 1 
= ~ ~ f(aj) ] = c, m, p (30) 
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Figure 3 The reduced conductivity afj/o o plotted against 
the reduced thickness k for polycrystalline (full curves) 
and columnar (broken curves) films and for different 
values of the grain paramete~ v. 

where Oo is the background conductivity. As 
above the subscripts c, m and p refer respectively 
to columnar, monocrystalline and polycrystalline 
films. 

The effect o f  grain structure is seen through the 
a t and bj coefficients. Effectively this analysis 
leads to 

ac, m = (1 + C 2v-l~b-lj c,m (31) 

with 
be, m = t ~-1 -- CV-1 (32) 

for columnar or monocrystalline films and to 

ap = (t  + C2v-1)b~, 1 (33) 

with 

b~, = p-1 + ( 1 - - C ) v  -1 (34) 

for polycrystalline films. 
Equation 30 can be evaluated numerically with 

the aid of  a pocket calculator. Comparison of  the 
reduced conductivity ratio offlOo for polycrys- 
talline or columnar films (Fig. 3) and monocrys- 
talline films with Dg ~ d (Fig. 4) reveals several 
interesting features. 

t. Columnar and polycrystalline film behav- 
louts present a formal similarity: the conductivity 
markedly depends on the grain parameter v and 
approaches a limiting conductivity ogy in the limit 
of  large reduced thickness k =d/Xo (i.e. for 
tt -+ ~) .  Care must be taken if the grain-boundary 
conductivities ogm and Og c reduce to an identical 
formula 

l f a  
agyOo -- } G  (j=) j = c,p (35) 
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Figure 4 Plot of Ofra/a o against k for monocrystalline 
films. Curves A, B, C and D are theoretical curves for the 
respective t values of 0.4, 0.6, 0.8 and 0.9, and for p = 
0.5. 

the limiting values of  the parameters aj and bj for 
columnar films 

ae= = -- (v + C2)C -' (36) 

be~ = -- Cv -1 (37) 

differ from those for polycrystalline films 

av= = (1 + CZv-1)b~ (38) 

bp= = (1 -- C)v -1 (39) 

From a crude point of  view the grain-boundary 
scatterers limit the apparent mean free path to 
about the grain size. 

2. Since for monocrystalline films d ~ Dg or 
Dg > d, it is easy to see that when the thickness 
becomes infinite the film conductivity o~n reduces 
to the background conductivity. 

3. I f  the grain boundaries cease to act as 
efficient scatterers (i.e. when the grain size tends 
to infinity and/or the transmission coefficient to 
unity), the multidimensional film conductivities 
coincide with the Cottey conductivity [30] as 
expected for films in which grain-boundary 
scattering no longer contributes to the current. 

Returning now to Equation 24 and considering 
the case of  an energy-dependent background 
relaxation time (Equation 28), it clearly appears 
that for n = 1 and 2 the integral remains elemen- 
tary. This gives 

oo r) • Y( J)t 
K1 = } e2 3eF ['q + 7 ) ~ T - j  bj ] 

f = c , m , p  (40) 
with 

g(aj) = a~ 1 -- 2 + 2aj in (1 + a~ x) 

and /" = c, m, p (41) 

(TrkBT) 2 
K2 - 3 Ko for 7rkBTe~ 1 ~ 1 (42) 
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Figure 5 Thermopower of columnar (broken curves) and 
polycrystalline (full curves) films as a function of the 
surface parameter g. 

Returning to the formal expressions for the 
conductivity a~j, thermopower S~j and thermal 
conductivity ~fj, substitution of Equations 30, 
40 and 42 into the respective Equations 26 and 27 
gives 

(TrkB)2T ( 1~ 1 g(aj)~ 
Sq = -- 3ee-----~- l + ( q + I ) ~ ]  

] = c , m , p  (43) 
and 

Kfj - -  
(rrkB)2T (~ a~ for rrkBTeF 1 "~1 

3 e--rC] 

(44) 

revealing that for rrkBTe~ 1 "r 1 and at ambient 
temperature the grain-boundary effects on thermal 
conductivity are identical to effects on electrical 
conductivity [52]. Thus in this section we limit 
our attention to electrical conductivity and 
thermopower. 

The thermoelectric power of columnar and 
polycrystalline films is shown in Fig. 5 as a 
function of g. Fig. 5 reveals at once that we have 
here the situation described for film conductivity: 
the same conclusions can be brought in the limit 
of very large /1 or v parameters. In studying the 
effect of grain-boundary scattering on mono- 
crystalline film thermopower (Fig. 6) we also 
inevitably see a close analogy between electrical 
conductivity and thermopower behaviours. 

At this point it may be remarked that, of 
course, the true Fermi surfaces are surely non- 
spherical and the proportionality between the 
square of the electron velocity, v 2, and the area, 

of constant-energy surfaces is then inaccurate. 
Moreover some authors [ i ,  51 ] have suggested that 
thermopower depends sensitively on the details of 
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Figure 6 Monocrystalline film thermopower Sfm against 
the reduced thickness k. Curves A, B, C and D are 
theoretical curves for the respective t values of 0.4, 0.6, 
0.8 and 0.9, and for p = 0.5. 

the Fermi surface. For these reasons it is usual 
[1, 37, 51] to evaluate the thermopower by 
introducing the parameter 

(~ in ~e" 1 (45) 
V = \ ~ l n e / e ~ e F  

which must changed markedly with distortions in 
the Fermi surface and the parameter 

=(~ in X01 
U \ ~ l n e / e = e F  (46) 

which depends on the energy dependence of the 
relaxation time. 

Note that if the free-electron model holds, the 
terms V and U are readily identified with respect- 
ively 1 and q + �89 

It must be kept in mind that provided 
e F >> k B T we may use the relation 

S, = S (  0 lnaf(e) t 
lne  /e=eF (47) 

which is still valid for a distorted Fermi surface. 
Here for convenience we define 

S = (rrkB)2T 
3eeF (48) 

In terms of ~e" and Xo we can write the film 
conductivity as 

afj = ooFy(Xo)~"XoFj(Xo) (49) 

with Fj(Xo)= bflf(aj). Hence the film thermo. 
power now reads 

in X0 ]]e=eV (50) 



making use of  Equation 47. Note that the evalu- 
ation of the thermopower with this alternative 
leads to an equation of  universal applicability. 

(3 in F~/3 In Xo)e=eF is now the basic function to 
be calculated. This receives attention in a later 
section. 

4 .  C o r r e l a t e d  g r a i n - b o u n d a r y  e f f e c t s  

It  may be of  interest (see Sections 5 and 6) to 
compare grain-boundary effects on resistivity, its 
temperature coefficient (TCR) and other transport 
coefficients such as thermopower since one 
expects that imperfections do not affect the 
various transport parameters in the same manner 
[1, 14]. 

Data on film TCR are in most cases [14, 46, 49, 
5 3 - 5 8 ]  interpreted in terms of  size effects by 
considering the following usual assumptions 
[37, 59,601. 

1. The rigid band model of  metals is valid. 
2. The number of conduction electrons per unit 

volume is temperature independent in the 
experimental range. 

3. The thermal expansion of the grain and the 
film thickness are negligible with respect to that of  
the mean free path. 

I f  we retain these assumptions and further 
neglect the thermal expansion mismatch between 
the film and its substrate, logarithmic 
differentiation of  the general Equation 49 leads to 

i3t/ a in F](Xo) 
/30 1 +  31nXo j = c , m , p  (51) 

since from assumptions 1 and 2 we have for the 
bulk TCR 

d in Xo d i n  Oo 
/30 - a T  - a T  (52) 

and since the film TCR is defined by 

d In ati (53) 
/3t/ - d r  

Returning to Equation 30 and noting that the 
parameters u and /~ are inversely proportional to 
Xo we obtain after some calculation: 

/3t/ 1 g(aj) 
- j = c , m , p  ( 5 4 )  

/30 bj f(a]) 

Hence at once we identify 3 In Fj(Xo)/3 In ),o with 
I)71 g(aj)/f(ai) -- 1. 

3 ~fJ ~fJ/POLO 

2' =4 

~.0'1 0.1 1 10 

Figure 7 The reduced product, resistivity • TCR, i.e. 
Pt/#~j/Po#o, of columnar (broken curves) and polycrys- 
talline (full curves) films as a function of #. 

Evaluation of the product,  resistivity x TCR, 
shows (Fig. 7) that for columnar or polycrystalline 
films the relation 

~SrjPu ~ / 3 ~ p o  ~/30P0' j = c, p (55) 

is satisfied at large reduced thickness, k = d/Xo, 
range (i.e. k > 0.1). This can be interpreted by the 
fact that grain-boundary effects do not vary with 
temperature. 

Moreover the size effects are less accentuated in 
monocrystalline films (Fig. 8) since the relation 
[601 

/3~P~ ~ ~fmPo (56) 

is valid until k reaches values greater than 0.01. 
Hence from Equations 55 and 56 similar size 
effects on resistivity ratio, pt//p=, and TCR ratio, 
t3=//3t/, are predicted. 

We now proceed with thermopower.  Comparing 
Equations 50 and 51 gives [60, 61] 

l \ 

St~ = S(V+U/3fJI/30] ] = c , m , p  (57) 

1.03 

1.02 _ p -- 0 .5  

1.01 _ 

O.Ol o.1 1 lO 

Figure 8 Variations in the reduced product pfmflfm/Pol3 o 
with the reduced thickness k. Curves A and C are 
theoretical curves for the respective t values of 0.4 and 
0.8, and for p = 0.5. 
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showing that, as suggested by Thompson [62], for 
external surface effects, the size effects on thermo- 
power, due here to both grain boundaries and 
surfaces, are intimately connected with size effects 
on TCR. Note also that as the Relation 56 is valid 
for monocrystalline films in the very large 
thickness range, the size effects on monocrystal- 
line thermopower must be correlated with size 
effects on electrical conductivity as predicted by 
the equation [63] 

s ~  = s  v + g  (58) 

where the conductivity ratio replaces the TCR 
ratio in Equation 57. 

Moreover the multidimensional grain-boundary 
models can be used [64, 65] to calculate the 
transport properties of grained films subjected 
to an electric field (Ex, Ey, 0) in the plane of the 
film and a transverse magnetic field (0, 0, H), 
contrary to the Mayadas and Shatzkes model for 
which the problem of calculating the conductivity 
is only tractable when a one-dimensional array of 
grain boundaries distributed perpendicular to the 
electric field is considered. 

The result can be achieved [64, 65] by 
expressing the Boltzmann equation under the 
combined action of the applied electric and 
magnetic fields within the framework of previous 
analysis [66, 67] and then by expressing the 
deviation f l  in terms of two functions which do 
not explicitly depend on the components vx and 
vy of the electron velocity. This analysis leads 
after tedious calculations to complicated analytical 
expressions. Fortunately a correlation exists 
between the size effects on the Hall coefficient 
RHfj and the product, resistivity x TCR, i.e. 
pfflfj [37], 

RHfj/RH0 ~Pfj~fj/Po~o j = c , m , p  (59) 

where Rno is the Hall coefficient of the bulk 
material. 

Equation 59 is accurate to describe the Hall 
effect in polycrystalline or columnar films of any 
thickness since only slight deviations from this 
relation are obtained for high values of the 
magnetic field (i.e. H =  1T). Moreover for 
monocrystalline films the Hall coefficient is not 
appreciably affected by grain-boundary effects: 
when the transmission coefficient t reaches values 
larger than 0.4 the size effect o n  R H f  m vanishes 
whatever the strength of the magnetic field. Since 

the Hall effect in monocrystalline films can be 
described from the Relationship 59 this result 
agrees with the theoretical predictions related to 
the product, resistivity x TCR. 

At this point it must be remarked [1] that, like 
thermopower, the Hall coefficient is a sensitive 
function of the Fermi surface and can be strongly 
modified [14, 68] in the presence of defects. 
Hence Formula 59 is of greatest importance in the 
practical study of grain-boundary effects when 
systematic study of the electrical resistivity, its 
TCR and Hall effect are undertaken simul- 
taneously. 

5. Experimental determination of transport 
parameters 

On one hand, it appears from Sections 3 and 4 
that the resistivity and TCR of grained films 
depend mainly on three essential parameters, 
namely Dg, p and t, which are known to change 
with deposition conditions and annealing [3, 8, 12, 
16, 18-28, 69-72].  On the other hand, the 
parameters U and V describing respectively the 
energy dependence of the mean free path and 
Fermi surface area are affected by large concen- 
trations of imperfections; distortion of the Fermi 
surface [15, 57, 68, 72, 73] as well as modification 
of the energy dependence of the relaxation time 
[15, 57, 68, 72] in the presence of imperfections 
have been examined. Hence it is essential to 
determine these important parameters from 
experimental data for the understanding of effects 
of grain boundaries or imperfections. In particular 
it seems that graphical determinations of these 
parameters are convenient ways of studying 
structural effects. Hence in this section we deal 
with some graphical methods of analysis, some of 
them requiring the establishment of linearized 
expressions for the transport parameters crfj and 
~3fj. 

The difficulty then is to find a linearization 
where the variables /.t and v can be separated in 
order to fit experimental data on the resistivity or 
its TCR with a formula with the variables (De, t) 
and p as adjustable parameters. Unfortunately 
such accurate linearization can be derived only for 
columnar or polycrystalline films. 

Returning to Equation 30 it is easy to prove 
that in the limiting case aj >> 1 the film conductivity 
and resitivity take the two alternative forms: 

afj/ao ~ (ajbj) -1 (1 -- ~ aj) (60a) 
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] = c ,m ,p  

Prj/Po ~ ajbi (1 + ~- ai) (60b) 

whose v and/~ ranges of applicability can differ. 
Using approximate Relation 60a for [b~l[ ~ 1 

and lapl >> 1 the polycrystalline film conductivity 
reduces to 

(61) 

This readily shows that for an infinitely thick 
polycrystalline film we have 

ggP = ( 1 - - '  1 - -C  1[1 _~_)-1 
go v(1 +C2v-1)] k + (62) 

Combining Equations 61 and 62 gives the resitivity 
ratio in the limiting form [74] 

Pgp -~ 1 + v (63) 

Equation 63 suggests clearly that the polycrys- 
talline film resistivity can be described by a linear 
asymptotic expression in the form 

p~p/pgp = 1 + k -1 ln(I/p)Mp(v) (64) 

Adjusting the function Mp(v) to make the range of 
applicability of Equation 64 larger (/J > 0.1 with 
0.1 ~< v ~< 4) leads to a relation [37] 

Mp(v) = (4.7v -1 + 3) -1 (65a) 

which is not really very different from the relation 

Mp(V) = {~ [1 + 1 ( C  2 3(1-- 
1 

derived directly from the Approximation 63. 
The TCR ratio t3gp/j3fp can be obtained by a 

similar treatment. However returning to Equation 
55 the result is immediate: 

/3gp//3fp = 1 + k -1 ln(1/p)Mp(v) (66) 

Since for monocrystalline films we always have 
Dg ~ d ,  we can at once write the asymptotic 
Equation 60b as: 

Pf= - 1 + - - +  -- (67a) 
Po 8/1 v 

which indicates that for d ~ Dg the monocrystalline 
film resistivity can be represented by the linear 
relation [60] 

Pfrn/PO ~ 1 + k -1 [C 2 in(l/p) + C1 ln(1/t)] 

= I -b k-lMm (p, t) (67b) 

In order to extend the range of applicability (k > 
0.01) of this approximate relation and to obtain a 
smaller deviation between the exact and approxi- 
mate values of the resistivity ratio, the constants 
6"2 and C1 are taken as 

C2 = 0.36 C1 = 1.144 (68) 

in relatively close agreement with the constants 
obtained from Equation (63). 

With the aid of the Relation 52 the linear 
expression: 

/30//3~m = 1 + k -1Mm(t ,p ) (69) 

follows directly for the TCR ratio. 
The analysis is rather fastidious for columnar 

films where Dg<d.  However a convenient 
procedure commences with Equation 67a which is 
valid for monocrystalline films and gives results in 
suprisingly good agreement with theoretical 
predictions. Noting that the resistivity of an 
infinitely thick colunnar films can be written as 

Pge/Po ~ 1 + (C-- ~) v > 1 (70) 

and then combining Equations 67a and 70 yields 

PIc/Pge = 1 + k -1 ln(1/p)Mc(v ) (71) 

with 

Me(v) = { ~ [ I + C ( c - - ~ ) ] }  -1 (72) 

One finds an evidently identical asymptotic 
expression for the columnar TCR ratio ~3ge//3~e 
whose range of applicability extends to ~ > 0.1 for 
0.1 ~<v~<4. 

Before we deal with thermopower we pause 
here to examine the possibilities of graphical 
determination of the parameters v and p. 
Equations 64 and 66 and 71 predict that a plot of 
kp~j (] = c, p) or k/~j  against k should yield a 
straight line with slope pgj or 1/13ed and ordinate 
intercept p .gcMj(v) ln(1/p) or Mj(v) ln(1/p)/~gj. 
Since the parameter v can be evaluated fromthe 
slope by means of Equation 35 it is then easy to 
deduce separately the value of the specularity 
parameter p from the intercept provided that 
structural study has revealed the exact structure 
(cubic-like or columnar-shaped) of grains. 

From Equation 67b it appears that such a 
useful treatment cannot be undertaken for 
monocrystalline films. Interpretation of exper- 
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imental data in the form pfm k against k allows 
only the evaluation of the function Mm(t , p) and 
it is very difficult to make an accurate choice 
between the possible set of (t, p) values. However 
provided that some additional structural studies 
were made one can obtain some interesting 
information on the changes in the p and t 
coefficients under various annealing and deposition 
conditions. 

Since in this section we collect the results 
related to graphical determination of structure- 
dependent parameters we are inevitably concerned 
with the U and V parameters. It is often appro- 
priate to define the difference in thermopower as 

AS O = Sfj--S O (73) 

Turning to Equation 57, taking into account that 
the thermopower of an infinitely thick film can be 
written as 

Sgi = S(V + U/3g]t/30 ] (74) 

and combining Equations 57 and 74 gives the 
general relation [61] 

~ s o = s u  . ]/3o 

Note that Equation 75 applies also for monocrys- 
tailine film, it is sufficient to identify/3~/with/30 
(i.e. index g ~ 0). Consequently a plot of ASgj 
against /3eS//3O should yield a straight line with an 
abscissa intercept of unity and an ordinate 
intercept of --SU(/3w//3o). Since /3~ (or /30 for 
monocrystalline films) can be easily evaluated 
from data reporting the thickness dependence of 
TCR of grained films of well defined structure, the 
value of U can be graphically determined. 

It may be also useful to consider the TCR ratio 
/3~/3~ dependence of the thermopower ratio S~i / 
S O by means of the formula 

SO - S-~ + ~o ~ (76) 

where for monocrystalline films Sg m and /3gin 
must be respectively taken as So and/30. It must be 
pointed out that Sg,/3g (or So, /3o for moncrys- 
talline fdms), U and V may be regarded as 
"intrinsic" parameters if the structure of grained 
films does not vary with thickness. Hence a plot of 
SfJSvj against/3t///3 O should yield a straight line 
with an ordinate intercept SV/Sg d and a slope of 

(SU/Sgj) (/3g j/30) which must pass through the 
point (SgJSed = 1, /3t//3 O = 1). It thus appears 
that analysis of thermopower data in the form 
S~JS O against /3~//3 O allows the graphical 
determination of both U and 11. 

Note also that the monocrystalline film thermo- 
power must satisfy Equation 58; thus ifTCR data 
are not available for monocrystalline films it is 
possible in the light of Equation 58 to interpret 
the thermopower data in terms of conductivity 
data. The analysis and methods of graphical 
determination of energy-dependent parameters 
U and V are quite similar to above procedures. We 
must only replace in Equation 75 and 76 the TCR 
ratio and to take care that for monocrystalline 
films we have to identify o o with Oo. Since the 
experimental measure of 3fro can be subjected to 
quite significant errors due to the slight values of 
3f[32, 37] and in some cases to the mismatch in 
thermal expansion coefficients of the film and 
its substrate [37, 75-77],  this alternative pro- 
cedure surely leads to a more accurate determi- 
nation of the parameters U and V [78]. 

Since the theoretical grain and thickness 
dependence of the TCR ratios can be approxi- 
mated by linear relations an alternative method 
for evaluating U and V is to use the asymptotic 
expressions 

1 
] = c , p  

o r  

(77) 

(78) Sfm = S{ V+ U[1 + k-lMm(t,p)] -1} 

for thermopower. 
Equation 77 presents no difficulty: since the 

factor Mi(v)ln(1]p) takes very small values, 
Equation 77 can be rewritten as 

SIV+U/30(1 lnp-a~ . . ~  /30 ] S # =  
L \ 

] = c, p (79) 

But care must be taken in the case of monocrys- 
talline films since Equations 67b and 68 indicate 
that the constant Mm(t, p) can exhibit values 
higher than 1.5 as observed in recent experiments 
[50, 79, 80]. Hence we are restricted to the two 
following limiting cases [81 ]: 

1.When Mm(t , p ) /k~ l ,  i.e. when grain- 
boundary scattering does not markedly contribute 
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to the resistivity, expansion of Equation 78 gives 
to lowest order 

S~= ~So  --SUMm (t ,p)k  -1 M=k -1 ~ 1 
(80) 

Equation 80 predicts that a plot of Sf=]r against k 
should yield a straight line with slope So and 
ordinate intercept -- SUM=(t, p). 

2. When M=(t,  p)/Ic>~ 1, i.e. when grain 
boundaries act as efficient scatterers, the consist- 
ent linear relation is 

Sf= -~ S V +  SUk/Mm(t,p ) k /M=(t ,p)  ~ 1 
(81) 

which shows that valuable information on the U 
and V parameters can be obtained by plotting 
thermopower data in the form Sf= against k. 

The choice of the accurate plot is conveniently 
determined by simultaneous resistivity measure- 
ments. 

6. Role of imperfections and effect of 
annealing 

Before we deal with impurities or imperfections 
other than grain boundaries it may be of interest 
to return to theoretical approximate expressions 
of grained film resistivity. From Equations 67a 
and b it appears at once that the thin monocrys- 
talline film resistivity obeys Matthiessen's rule: 

* ( 8 2 )  P~rn ~ Po + Pg= + Ps 

where Pgm and Ps are respectively the resistivities 
due to grain boundary and external surface 
scattering. 

Rerranging the asymptotic Equations 63 and 71 
one now shows that the polycrystalline or columnar 
film resistivity can be described by an additive 
resistivities rule 

Pc4 "~ Pgs + Ps /' = c, p (83) 

where the phonon contribution Po is included in 
the infinitely thick film resistivity Ped, which if the 
grain boundaries do not act as very efficient 
scatterers can be rewritten in the form 

Pc/ = Po + P*" (84) g~ j =  c,p 

satisfying Matthiessen's rule. 
Further considering the additional contribution 

PI of other imperfections to the total film resis- 
tivity, p~j, it follows that 

P;m'~-'Po+P*gm+Ps+PI = Z Pi (85) 
i 

and 

P;j ~-" PC/ + Ps + PI = ~ Pi j = c,p (86) 
i 

The total film thermopower defined by the 
relation 

(d In p*) 
S* 

- S \  d In e/e:eV 

can now be given by the Nordheim-Gorter rule 
[511 

S*~ = ptj-l~, piS~ (87) 
i 

where we have made use of the relation 

Sr = \8  in e/e=eF 

for the thermopower due to the ith scattering 
process. Accordingly we write 

S;= = p;m 1 (poSo + PsSs + p*~S*~ + P~SI)(89) 

and 

S~/ = p~,/-1 (psS  s 4. p c / 4 .  DIS1 ) ]' = c, p 

(9o) 

We limit here our attention to the difference 
2xS~. between the film and the "perfect" bulk 
material (i.e. the "perfect" infinintely thick film). 
Applying the Nordheim-Gorter rule and rearrang- 
ing Equations 85 and 89 gives four alternative 
expressions for the monocrystalline difference 
AS;= 

AS~n So + *-1 = -- pf= (poSo + PsSs 

+ O*gmS*gm + pISI) (91a) 

A S ; =  = (S I - S O )  + p~m I [Po(So--SI)  

+ ps(Ss --SI)  + p*g~(S*gm --Si)] (91b) 

AS;m = (& --So) + [Po(So--&) 

+ P'gin(S'am --Ss) + PI(SI --Ss)] (91c) 

a s ; =  = (Gm-- So) + P;m 1 [Po(So -- S m) 

+ Ps(S, - - S ~ ) +  PI(SI --S~n)] (91d) 

and only three alternative expressions for the 
columnar and polycrystalline difference ASg s. 
since Equation 86 involves only three resistivity 
terms 

AS~./ = --SC/ + ,-1 P~i (pc/Sgj + PsSs + P[Si) 

j = c, p (92a) 
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= (s, + p E '  

+ Px(SI -- Ss)] (92b) 

= ( &  - + o - &) 

+ Ps(Ss -- SI) ] (92c) 

The film resistivity p~ is know to change with 
annealing. Hence in terms of Equations 91 and 92 
a plot, for a given film subjected to successive 
annealings, of AS~m or &S~j against 1/p*~ should 
yield a straight line, as suggested by several authors 
[58, 82-85].  However examination of Equations 
91 and 92 shows than an adequate choice for the 
true expressions of the slope and ordinate 
intercept is not clear. This will be discussed later. 

Some authors [72, 73, 83, 86] have advanced 
arguments to suggest that the U and V parameters 
can vary on annealing. It must be pointed out that 
this interpretation has been Proposed by using 
Equation 47 [72] or an equation derived within 
the framework of the Fuchs-Sondheimer model, 
i.e. an equation obtained by considering only the 
external surfaces effect [86]. From Equations 91 
and 92 it thus appears that the parameters U or/ 
and V evaluated by these authors must include 
terms which can be modified on annealing. It is 
certainly the case for the resistivities Ps, Pe and PI 
even if the thermoelectric powers Ss, S e and SI can 
be regarded as "intrinsic" thermopowers which 
remain unchanged on annealing. It might be of 
interest to determine if the energy-dependent 
parameters U and V, related to the contribution 
So in metal films, differ from those related to the 
thermopower of bulk pure metal, and thus to 
verify if the Fermi surface in metal films is 
distorted with regard to the Fermi surface in bulk 
metal. 

Let us, for example, consider the case of 
monocrystalline films containing imperfections 
and exhibiting average grain sizes (d ~ De) which 
remain unchanged or increase very slightly 
following anneal, as sometimes observed in 
experimental work [4, 87]. In spite of this 
assumption the analysis must be subdivided into 
two limiting cases depending on the Mm(t, p)/k 
values. 

From Equations 82 and 87 it appears that the 
total monocrystalline thermopower may be 
written as 

* * ( 9 3 )  SfraPfm = PlSi + PfmSfm 

where P~m and S~m are just the transport 

parameters derived in Section 5 (Equations 67, 78 
and 80). Hence under the assumption of very small 
Mm(t , p)/k the expression for S~m becomes, after 
simple but rather tedious mathematical manipu- 
lations, 

S~m ~ S~ra 4 Mm(t' p) Po 
k Po + PI ( S V - S - m )  (94) 

where S=m is 

S-m = (PlSI + PoSo)(Po + PI) -1 (95) 

and is readily identified with the thermopower of 
an infinitely thick film having the same micro- 
structure as that of the thin film. Note that such a 
physical intepretation of Equation 95 supposes 
implicitly that the concentration of imperfections 
does not vary with thickness. Since S. is connected 
with PI care must be taken that changes in S. can 
be induced by annealing. We see from Equation 94 
that by knowing (PI + Po) from resistivity data we 
can determine V by plotting S~m data in the form 
S~mk against k, provided we are concerned with 
thickness-independent concentration of imperfec- 
tions. 

In the limit of large Mm(t , p)k -1, combining 
Equations 67b, 79 and 93 gives 

S*~m = S V + M ~ E t o I - - S V ) +  SU, (96) 

Inspection of Equation 96 reveals that a plot of 
S~m against k allows us to calculate V separately 
from the ordinate intercept provided that PI is 
thickness-independent. 

Since for columnar or polycrystalline films the 
function ln(1/p)Ms(v)k -1 also takes small values, 
a close analogy exists between the asymptotic 
Equation 94 and the following asymptotic 
equation 

S*~ = S=j + Pvd ln(1/p)Mj(V)(SV_S=j) 
PI + P~ k 

] = c, p (97) 

derived for rims whose infinitely thick film 
resistivity, pg] + PI, differs from Po + PI. Here the 
thermopower of an infinitely thick film is 
expressed as 

S=/ = (SIPI + S~p~)(PI + pgj)-1 j = c, p 

(98) 

Equations 97 suggests a method to determine V 
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provided that the following requirements are 
fulfilled: 

1. The contribution PI can be neglected for 
thoroughly annealed films. 

2. The changes in Ped on annealing can be 
essentially attributed to increase of the grain size 
and the grain growth is estimated from structural 
studies 

In these conditions we expect to determine V, 
for structurally well defined films, at different 
stages of annealing since at each stage P1 + Pgj and 
S=i can be estimated from the slope of respective 
linear plots of kp~j and kS~j against k. 

It is necessary to pause here and to remark that 
Equations 91 and 92 are essentially concerned 
with a given film whose resistivity decreases on 
ageing. However some difficulties arise since on 
the one hand interpretation of data generally 
requires the validity of the assumption that there 
are no variations in SI, S s and Sg during annealing 
and on the other hand, as noted above, true 
quantitative results on $I, S s or Sg are difficult to 
obtain since it is physically doubtful to assume 
that annealing induces no changes in Ps or/and pg. 
Equations 94, 96 and 97 are concerned with a set 
of films of various thicknesses and should provide 
valuable information on the energy parameter V 
especially when severe conditions of deposition 
ensure a concentration of imperfections which 
does not vary with thickness. Unfortunately any 
of the existing methods requires the use of 
physical assumptions which may differ from one 
method to another and this is not very favourable 
for a precise evaluation of the physical parameters 
V, U and S~. We can make some progress, however, 
by undertaking simultaneous measurements of all 
the transport properties and then interpreting the 
data on the basis of all previous equations. 

Annealing of the films results in the removal of 
frozen-in defects [4, 7, 14, 27]; valuable infor- 
mation on the restructuration mechanisms can be 
obtained [18, 20, 21, 23-25]  if several successive 
annealings are performed at various temperatures. 
Kinetic study of the resistivity recovery during 
successive isothermal annealings allows us to 
determine the activation energy for the recovery 
process [ 18, 20, 21,23, 25]. Moreover experiments 
[21, 23] have given evidence of successive 
recovery stages with different activation energies. 
By comparing the experimental values for acti- 
vation energies with other values, from the litera- 

ture related to the bulk specimen, the different 
recovery stages can generally be attributed to 
defined restructuration processes [21, 23]. 
Moreover if the calculated activation energy varies 
markedly with film thickness then the observed 
behaviour may be understood by assuming that 
the concentration of imperfections depends on 
film thickness. Structure determination during or 
after thermal treatment is of great interest 
especially when the resistivity recovery is caused 
by an increase of the grain size or a decrease of the 
surface roughness. Moreover these structural 
studies allow us to treat the resistivity as if related 
to a well defined grain model. It thus appears that 
some preliminary but useful information for the 
characterization of imperfections can be obtained 
from an annealing study. 

An estimate of the magnitude of the contri- 
bution of imperfections to transport properties 
can be made by undertaking simultaneous 
measurements of the resisitvity, its TCR and the 
Hall coefficient. Only slight size effects on the Hall 
coefficient together with correlated size effects on 
Hall coefficient and the product, resistivity x TCR, 
characterize unambiguously metal films in which 
only grain-boundary and surface scattering 
significantly modify the bulk transport properties. 
Effectively if the contribution Pz to the resistivity 
is temperature-independent, a law identical to 
Equation 59 can hold in agreement with some 
experimental data [14]. Departure from the law 
(Equation 59) can be attributed to a very large and 
completely randomized concentration of 
impurities or other imperfections. 

Study of ageing effects on thermopower at 
different stages can provide quantitative deter- 
mination of S I [84-86].  However, as discussed 
previously, it is a difficult task to evaluate this 
parameter precisely. Consider for example a 
monocrystalline film where a structural examin- 
ation and an annealing study have given evidence 
that the grain boundaries and external surfaces are 
not markedly modified by the successive annealings 
and that only one type of imperfection con- 
tributes to the resistivity PI which changes on 
annealing. If  further a plot of AS;m against 1/p*~m 
yields a straight line with a single slope and no 
intersecting straight lines as sometimes observed 
[84, 85], Equation 91b is then the suitable 
equation to use to determine the intrinsic S I. It is 
now well established that Equations 91 and 92 
require a lot of somewhat questionable assumptions 
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and allow a true quantitative evaluation of SI in 
limited experimental work. 

However if the conductivity a~m/ao or a~/o~ 
ratio dependence of the difference AS; m or AS~ 
in thermopowers does not correspond to a linear 
law in the relatively large thickness range, it may 
be advanced without ambiguity that the observed 
behaviour is due to a thickness-dependent contri- 
bution of imperfections. It is effectively well 
established [37] that the contributions Ps and P~rn 
to the total resistivity p* ~j ( j = c ,  p) and P~na 
become negligible in the limit of large thicknesses. 
Then for monocrystalline films any of Equations 
91 reduces to 

AS~m l a, D g --* - ~ (SI -- So)(l -- a~ m/ao) (99) 

and for columnar and polycrystalline films, any of 
Equations 92 to 

AS:yld~Oo ~ ($I -- Sgj)(1 -- a~j/agj) (100) 

Equation 99 and 1 O0 indicate that: 

1. In the presence of a large concentration of 
imperfections (i.e. for a~m/o o or a~i/ag 1,~ 1), 
AS* becomes zero only if respectively SI ~ So or 

Si ~ S~d. 
2. In the general case where the imperfection 

concentration is thickness-dependent the plot of 
AS* against a~m/O0 or a~j/o0 exhibits marked 
departure from a straight line. 

Simultaneously interpreting thermopower data 
in terms of size effects can provide additional infor- 
mation on the nature of imperfections by means 
of evaluation of the parameters U and V and then 
$I. As discussed earlier, the values of V calculated 
for different isothermal annealings can be con- 
sidered true quantitative results only if (returning 
for example to the case of monocrystalline films) 
the films exhibit perfect monocrystalline structure 
after subsequent annealing and a thickness- 
independent concentration of imperfections 
during annealing. If moreover annealing results in 
no growth of grains (d ~-Dg) and no significant 
difference between the observed value of V and 
the bulk value, it is possible to evaluate the 
imperfection thermopower $I for different 
annealing stages and for a given set of films. 
Further the fact that $I varies on annealing can be 
attributed to the removal of different imperfections 
in the successive annealing stages, an particular if 
this behaviour is confirmed by the experimental 
determination of different activation energies for 
the various recovery stages. 
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If the grain size increases on. annealing, 
Equations 94 and 96 must be modified (i.e. k-lC2 
must be replaced by XoC2/Dg) to separate the 
grain-boundary and external surface contributions. 
Interpretation of data then becomes rather 
complex since annealing can result in both growth 
of grains and correlated decrease of P~n. Hence, as 
for columnar and polycrystalline films, careful 
investigation of the grain structure during 
annealing becomes necessary to undertake a 
correct estimate of the parameters SI, V and U. 

These few examples clearly indicate that 
identification of imperfections in thin films 
remains a difficult task. However a qualitative 
estimate can be made provided that simultaneous 
studies of size effects in various transport 
parameters are undertaken for as-deposited films 
and for films annealed at different temperatures. 
The more numerous the experimental data, the 
more accurate become the qualitative and some- 
times quantitative identification of imperfections. 

7. Experimental results 
There are many results on thin-film resistivity or/ 
and its TCR which may be understood in terms of 
multidimensional grain-boundary models [37]. In 
this section only some of the earlier published 
results on transport properties of thin films are 
discussed. 

Early results on the resistivity of aluminium 
films [55] were found to be in agreement with a 
grain model related to monocrystalline films 
exhibiting grain size close to thickness. The size 
effects on the resistivity of evaporated palladium 
films [88] can be fitted quite satisfactorily by 
Equation 64 and yields a physically reasonable 
value of about 1.7 for Mm(t,p). In sharp constrast 
to these results, Borodziuk-Kulpa et al. [50] 
reported anomalously large size effects on the 
resistivity of thin vanadium films and obtained a 
very large value of about 17 for the Mm(t,p ) 
function. Such a high value cannot be attributed 
to grain-boundary scattering alone but can perhaps 
be understood in terms of additional imperfections 
depending linearly on thickness as suggested by 
these authors. However thermal ageing at 570K 
does not induce a marked decrease of the resisti- 
vity. Here the interpretation would be more 
significant if additional structural studies were 
made. Structural studies may also be of interest in 
analysing the results on indium films [44] or tin 
films [46] since the authors assumed that, for 



thinner films, the grains exhibit a columnar shape 
[46] with grain size that remains equal to film 
thickness [44] and that as the film thickens the 
grain size becomes nearly constant. Such films 
can then be interpreted successively in terms of 
bidimensional and three-dimensional models of 
grains. Results on the thickness dependence of the 
electrical resistivity and its TCR of annealed thin 
copper films [89] agree well with Equation 71 and 
yield the following pair of values of the parameters 
(t = 0.9, p = 0.6) and (t = 0.8, p = 0.9). 

Tochitskii and Belyavskii [71] studied grain- 
boundary scattering on various metal films of 
given thicknesses. Effect of substrate temperature 
Tsub on film structure was investigated and the 
grain size was evaluated by transmission electron 
microscopy (TEM) techniques. The grain size 
dependence of the resistivity was compared with 
the Mayadas-Shatkzes (MS) model in order to 
determine the reflection coefficient r at grain 

boundaries, which is related to the transmission 
coefficient t defined in multidimensional models 
by 

in(l/t) ~ r(1 -- r) -1 (101) 

The grain-boundary contribution to resistivity was 
evaluated by means of Matthiessen's rule. The 
resistivity ratio P*g/Po was found to take values in 
the range 1.10 to 2.17. It should be noticed that as 
the grain size increases with increasing T~b the 
film exhibits successively polycrystalline and 
monocrystalline structure. Then the resistivity 
pg cannot be connected with the resistivity pg of 
an infinitely thick film but with the extra resistivity 
of  a given film of particular thickness deposited on 
a substrate maintained at high temperature and 
exhibiting a monocrystalline structure, i.e. 

p ;  = 1.144 (Xo/Dg) in(1/O (102) 

However in the absence of complete resistivity 
data, no conclusion can be drawn. 

Ghosh and Pal [54] studied the resistivity and 
TCR of thin evaporated nickel films and obtained 
a reasonable value (p= ~ 2po) for the resistivity 
p= of an infinitely thick film in correlation with 
the fine-grained structure revealed by electron 
micrographs and diffraction patterns. However the 
product p~/3= was found to depart from the law 
(Equation 55). Since Relation 55 is also valid 
when the contribution PI to the film resistivity is 
temperature-independent, this departure can be 
attributed to random TCR data which make the 
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Figure 9 A plot of/3fd against d for nickel films. In the 
inset is shown the modified pfd against d plot (Angadi 
and Udachan [49]): full line, experimental data; broken 
line, three-dimensional model. 

thickness dependence of the TCR not clear. 
Angadi and Udachan [49] reported results on size 
effects on resistivity and TCR of evaporated nickel 
films. They analysed their data in terms of the MS 
model assuming that d ~ D g  over the thickness 
range 6 to 25 nm and d < Dg for thicker films. 
Moreover a perfect linear relation between/3fd and 
d is verified. However since a quite high value of 
p= with respect to Po was deduced (p= ~ 2.800) 
and since the Relation 55 was found to be 
approximately satisfied (i.e. t30 ~, 3/3=), the data 
may also be understood for thinner films in the 
light of the monocrystalline model and for d > 
20 nm in the light of the three-dimensional model 
of  grain boundaries. We have made an attempt to 
fit their data in terms of Equation 64 and 

/3fp//3gp = l - k  -1 ln(1/p)mp(v) (103) 

derived from Equation 66 when k -1 ln(1/p)Mp(v) 
takes small values by modifying (inset of Fig. 9) 
the slope of their pfd against d plot in order to 
obtain a resistivity ratio P=/Po strictly equal to 3. 
The straight lines of Fig. 9 exhibit behaviours in 
agreement with the three-dimensional model and 
yield p values of about 0.4 from the resistivity plot 
and about 0.7 from the TCR plot. However 
analysing their data on the basis of the columnar 
model should certainly lead to similar results. Thus 
this experimental work clearly shows how useful 
are the structural studies to corroborate theoretical 
predictions with experimental results. 

In the majority of experimental work devoted 
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to resistivity and TCR no attempt has been made 
to explain partially the role of grain boundaries 
and/or imperfections by examining the annealing 
effect. The first evidence of grain-boundary 
migration on annealing was provided by Van Gurp 
[20] who studied the grain size increase as a 
function of annealing temperature (AT) and 
evaluated the grain-boundary resistivity in terms of 
the MS model. Similarly Uda et al. [8] investigated 
by scanning electron microscopy (SEM) the 
annealing behaviour of molybdenum films. The 
AT dependence of D e was found to be well 
correlated with resistivity dependence. However 
their results were not connected with a defined 
restructuration process. Tellier [23] showed that 
annealing in polycrystalline zinc films results in 
both grain migration and surface reordering, and 
this interpretation was sustained by measurement, 
before and after annealing, of film resistivity and 
TCR. Longbrake and Brient [90] used the MS 
model to determine the change in the reflection 
coefficient r (i.e. transmission coefficient t) on 
annealing. However as the grain size was assumed 
to remain constant during annealing, an alternative 
interpretation of the observed increase in grain 
parameter v is that Dg increases slightly on 
annealing. Narayandas et al. considered the 
thickness dependence of defect density in silver 
films [91] and copper films [92] and interpreted 
annealing results on the basis of Vand's theory 
[93]. Activation energy was found to vary over the 
range 1.1 to 1.5 eV for silver films and over the 
range 1.27 to 1.43 eV for copper films. After 
annealing O= and 1//~= were only about 10% 
greater than bulk values. As the structure of silver 
films was found to be grained, a zero value of p 
was assumed. Since surface reordering generally 
takes place in the first stage of annealing and 
results in partially specular scattering, a more 
realistic fit would have been achieved using the 
theory of monocrystalline film and undertaking 
a simultaneous structural study. 

Narashimha Rao et al. made measurements of 
thermopower, resistivity and TCR on annealed 
copper [89] and silver [94] films and suggested a 
thickness dependence of the energetic terms U and 
V which decreased by about 20% with increasing 
thickness. But examination of their data by Tellier 
and Tosser [37] has given evidence against the 
adequateness of the monocrystalline model to 
describe the resistivity and TCR behaviour. This 
interpretation was sustained by satisfactory fits of 
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the variation in ASom and Sfm/So with afm/a o 
yielding constant values for U and V. Damodara 
Das and Mohanty [95] studied the thermopower 
of/3-tin films between 300 and 425 K. The films 
exhibited a fibrous structure with grain boundaries 
parallel to the substrate. No theoretical equations 
have been derived for a such fibrous structure but 
it is reasonable to expect the main conclusions 
related to polycrystalline or columnar films to 
apply here. The thickness dependence of thermo- 
power was found to satisfy a linear law for k up to 
0.1. This result agrees well with theoretical 
predictions of columnar and polycrystalline 
models, that effectively for relatively small v the 
linearized forms of TCR ratio (Equation 66 and 
71) are still valid for small k(k >/0.1). 

Large contributions to thermopower in thin 
metal films can be provided by the existence of 
large concentration of imperfections frozen in 
films. Hence some studies [14, 15, 72, 83-86] 
have been devoted to annealing effects on resis- 
tivity, TCR and thermopower. Sugawara et al. 
analysed the annealing behaviour of thermopower 
of thin copper films against copper wires [96] and 
thin gold films against lead-copper wires [72]. 
They neglected grain-boundary scattering and 
interpreted their data in terms of the Nordheim- 

p~ &S0 as a function of Gorter rule by plotting * * 
Ps. The fact that * * pfASo depends linearly on Ps 
can be interpreted in terms of three alternative 
equations, and hence as discussed earlier the 
choice of the theoretical equation can cause large 
errors in S s and U. Moreover the contribution PI 
to resistivity was assumed to be independent of 
thickness even if the relatively marked dispersion 
of point data after annealing has required a least- 
squares method to determine the surface scattering 
parameter. In the case of gold films [72] the 
energetic parameter U has been assumed to vary 
on annealing but the changes of Pi and perhaps 
S I on annealing were not clearly established, so that 
a complete conclusion cannot be drawn. Leonard 
and Lin [85] used the Nordheim-Gorter rule to 
determine the component S s of thermopower 
by plotting AS~ against 1/p~. They obtained two 
straight-line segments with slope of opposite sign. 
Since a surface restructuration process which 
requires small activation energy certainly occurs at 
lowest AT, they considered the linear segment 
corresponding to this temperature range to 
estimate SI from the ordinate intercept of the AS~ 
against 1/p~ plot. Then the evaluated SI value is 



probably concerned with as-deposited films since 
the existence of two intersecting straight lines 
seems to indicate that S I varies on annealing as 
expected when annihilation of various structural 
defects arises at different annealing stages. 

Suri et al. [14, 15, 86] have undertaken com- 
prehensive studies of annealing effects on resis- 
tivity, TCR, thermopower and Hall coefficient of 
monocrystalline copper films. The conductivity 
ratio, O~rn/Oo, dependence of the difference AS~)m 
in thermopowers was found to deviate from a linear 
law. It could be advanced, as suggested by Suri 
et al., that the observed behaviour is due to the 
thickness-dependent contribution of imperfection, 
in good agreement with the marked effect of 
annealing. Variations of the Hall coefficient and 
p ~ with thickness showed an excellent quantitat- 
ive fit with Equation 59 indicating that PI is 
temperature-independent. 

Wedler and Chander [88] studied the size effect 
on resistivity and thermopower of thin palladium 
films annealed at 300 and 440 K. The resistivity of 
an infinitely thick film annealed successively at 
300 and 440 K was respectively found to deviate 
markedly (p~ ~ 2.2p0) and slightly (p~ ~, 1.15p0) 
from the bulk value indicating that for AT = 
300K the contribution PI to resistivity remains 
significant. After annealing at 440K the film 
thermopower approaches the bulk value and a 
linear relation between dN~m and d was approxi- 
mately verified. However, surprisingly, a plot of 
their data for thinner films in the form S~m 
against d can also be described by a linear relation 
(Fig. 10) even if, for AT = 300K, PI is large with 
respect to P0 and thus makes the supplementary 
condition of validity of Equations 96, namely 
Mm(t,p)(PI + Po)/kPo < 1, not completely 
fulfilled. Using Equation 96 leads to S V  values of 
about 5 / IVK -1 for films annealed at 300K and 
about 4.6/aV K -1 for films annealed at 440 K. The 
values of SI(S I ~ 10.8 pV K -1 for AT = 300K, 
$I ~ 15 #V K -1 for AT = 440 K) calculated from 
Equation 96 assuming that So = -- 9.3/~V K -I 
depend slightly on annealing temperature; this 
dependence may be due to small errors in the 
evaluation of (PI + Po) and Mm(t ,p )  for films 
annealed at 440 K. The thermopower data related 
to thicker films also fitted a linear relation as 
predicted by Equation 94 and yielded S V =  
4.5/~VK -1 for AT = 3 0 0 K  and S V = 6 . 1 / I V K  -1 
for AT = 440K, in fair agreement with previous 
values. Unfortunately the values of the component 
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Figure 10 A plot of Sfm against k for thinner palladium 
films (Wedler and Chander [88]): full line, AT = 300K; 
broken line, AT = 440 K. 

S I of thermopower evaluated after annealing at 
300 and 440K differ from those deduced for 
thinner films. This point is not understood and 
may be due to a thickness-dependent concentration 
of some defects. It is then convenient to perform 
careful structural studies to obtain consistent SI 
values. 

8. Conclusion 
The significant fact to emerge from the experi- 
mental studies of defect effects on transport 
properties of  thin films is the difficulty of 
separating the imperfection effects from size 
effects due to grain-boundary or suface scattering. 

Generally resistivity and TCR data are in 
agreement with grain-boundary models. Moreover 
some results on resistivity recovery can be under- 
stood on the basis of grain-boundary models. 
Difficulties arise when we are concerned with the 
thermopower of films where a high concentration 
of imperfections is present. Experimental work 
does not establish clearly that the components SI, 
Ss and Sg of thermopower can be regarded as 
intrinsic parameters. In contrast, changes of SI on 
annealing or with thickness have been observed in 
some experimental work. Evaluation of V from 
the thickness dependence of the thermopower or 
difference in thermopowers does not establish 
without ambiguity that the energetic parameter 
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V related to the bulk thermopower So varies with 
thickness or on annealing. It may be remarked that 
the determination of the imperfection contribution 
to the thermopower is generally seriously altered 
by the lack of information about the restructuration 
processes caused by thermal ageing and about the 
exact film structure. 
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